|
||||||||||||||||||||
Indexing and Selecting Data
Время создания: 01.10.2017 03:00
Раздел: Python - Pandas
Запись: xintrea/mytetra_db_mcold/master/base/1506816018bnkajzcysw/text.html на raw.githubusercontent.com
|
||||||||||||||||||||
|
||||||||||||||||||||
In this chapter, we will discuss how to slice and dice the date and generally get the subset of pandas object. The Python and NumPy indexing operators "[ ]" and attribute operator "." provide quick and easy access to Pandas data structures across a wide range of use cases. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommend that you take advantage of the optimized pandas data access methods explained in this chapter. Pandas now supports three types of Multi-axes indexing; the three types are mentioned in the following table −
.loc() Pandas provide various methods to have purely label based indexing. When slicing, the start bound is also included. Integers are valid labels, but they refer to the label and not the position. .loc() has multiple access methods like −
loc takes two single/list/range operator separated by ','. The first one indicates the row and the second one indicates columns. Example 1 #import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) #select all rows for a specific column
print df.loc[:,'A'] Its output is as follows − a 0.391548
b -0.070649
c -0.317212
d -2.162406
e 2.202797
f 0.613709
g 1.050559
h 1.122680
Name: A, dtype: float64
Example 2 # import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select all rows for multiple columns, say list[]
print df.loc[:,['A','C']] Its output is as follows − A C
a 0.391548 0.745623
b -0.070649 1.620406
c -0.317212 1.448365
d -2.162406 -0.873557
e 2.202797 0.528067
f 0.613709 0.286414
g 1.050559 0.216526
h 1.122680 -1.621420
Example 3 # import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select few rows for multiple columns, say list[]
print df.loc[['a','b','f','h'],['A','C']] Its output is as follows − A C
a 0.391548 0.745623
b -0.070649 1.620406
f 0.613709 0.286414
h 1.122680 -1.621420
Example 4 # import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # Select range of rows for all columns
print df.loc['a':'h'] Its output is as follows − A B C D
a 0.391548 -0.224297 0.745623 0.054301
b -0.070649 -0.880130 1.620406 1.419743
c -0.317212 -1.929698 1.448365 0.616899
d -2.162406 0.614256 -0.873557 1.093958
e 2.202797 -2.315915 0.528067 0.612482
f 0.613709 -0.157674 0.286414 -0.500517
g 1.050559 -2.272099 0.216526 0.928449
h 1.122680 0.324368 -1.621420 -0.741470
Example 5 # import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D']) # for getting values with a boolean array
print df.loc['a']>0 Its output is as follows − A False
B True
C False
D False
Name: a, dtype: bool
.iloc() Pandas provide various methods in order to get purely integer based indexing. Like python and numpy, these are 0-based indexing. The various access methods are as follows −
Example 1 # import the pandas library and aliasing as pd
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # select all rows for a specific column
print df.iloc[:4] Its output is as follows − A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
Example 2 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing
print df.iloc[:4] print df.iloc[1:5, 2:4] Its output is as follows − A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
C D
1 -0.813012 0.631615
2 0.025070 0.230806
3 0.826977 -0.026251
4 1.423332 1.130568
Example 3 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Slicing through list of values
print df.iloc[[1, 3, 5], [1, 3]] print df.iloc[1:3, :] print df.iloc[:,1:3] Its output is as follows − B D
1 0.890791 0.631615
3 -1.284314 -0.026251
5 -0.512888 -0.518930
A B C D
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
B C
0 0.256239 -1.270702
1 0.890791 -0.813012
2 -0.531378 0.025070
3 -1.284314 0.826977
4 -0.460729 1.423332
5 -0.512888 0.581409
6 -1.204853 0.098060
7 -0.947857 0.641358
.ix() Besides pure label based and integer based, Pandas provides a hybrid method for selections and subsetting the object using the .ix() operator. Example 1 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Integer slicing
print df.ix[:4] Its output is as follows − A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
Example 2 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) # Index slicing
print df.ix[:,'A'] Its output is as follows − 0 0.699435
1 -0.685354
2 -0.783192
3 0.539042
4 -1.044209
5 -1.415411
6 1.062095
7 0.994204
Name: A, dtype: float64
Use of Notations Getting values from the Pandas object with Multi-axes indexing uses the following notation −
Note − .iloc() & .ix() applies the same indexing options and Return value. Let us now see how each operation can be performed on the DataFrame object. We will use the basic indexing operator '[ ]' − Example 1 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df['A'] Its output is as follows − 0 -0.478893
1 0.391931
2 0.336825
3 -1.055102
4 -0.165218
5 -0.328641
6 0.567721
7 -0.759399
Name: A, dtype: float64
Note − We can pass a list of values to [ ] to select those columns. Example 2 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[['A','B']] Its output is as follows − A B
0 -0.478893 -0.606311
1 0.391931 -0.949025
2 0.336825 0.093717
3 -1.055102 -0.012944
4 -0.165218 1.550310
5 -0.328641 -0.226363
6 0.567721 -0.312585
7 -0.759399 -0.372696
Example 3 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df[2:2] Its output is as follows − Columns: [A, B, C, D]
Index: []
Attribute Access Columns can be selected using the attribute operator '.'. Example import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D']) print df.A Its output is as follows − 0 -0.478893
1 0.391931
2 0.336825
3 -1.055102
4 -0.165218
5 -0.328641
6 0.567721
7 -0.759399
Name: A, dtype: float64 |
||||||||||||||||||||
Так же в этом разделе:
|
||||||||||||||||||||
|
||||||||||||||||||||
|